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A NEW NECESSARY CONDITION OF OPTIMALITY FOR

SINGULAR CONTROL PROBLEMS

By

D. H. Jacobson

Division of Engineering and Applied Physics

Harvard University - Cambridge, Massachusetts

ABSTRACT

A variation in the form of a rectangular pulse of short duration,
is introduced into the singular control function. The technique of
Differential Dynamic Programming is used to obtain an expression
for the change in cost produced by the control variation, and a new
necessary condition of optimality is deduced by requiring that this
change in cost be non-negative. When terminal equality constraints
are present the control variation takes the form of a rectangular pulse
followed by a 'special variation' which is chosen to keep the terminal
equality constraints satisfied to first-order. Simple control problems
are used to illustrate the non-equivalence of the new necessary condition

and the generalized L.egendre-Clebsch condition.
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1, Introduction

Necessary conditions of optimality for non-singular, unconstrained,
control problems are well known. When control and state variable con-
straints are present, the situation is more complex, but recent research
[1]-[7] indicates that many of the subtleties of this class of problems are
now uncovered. - In the classical Calculus of Variations literature, little
space is devoted to the analysis of singular variational problems. . Re-
cently, interest has been aroused in singular optimal control problems
[8]—[19]+, owing to the appearance of such problems in, for example, the
aerospace field and the chemical industry. Kelley discovered [20], and
Robbins [21], Tait [22] and Kelley et al [23] generalized, a new necessary
condition of optimality for singular arcs. The condition, known as the
generalized Legendre-Clebsch condition, has, in a number of cases,
proved useful [16], [18], [23] in eliminating some stationary arcs from
the class of candidate arcs for minimizing solutions. The generalized
Legendre-Clebsch condition is proved using special control variations.

In this paper, by the use of a different special control variation, an addi-
tional necessary condition of optimality is derived. :l: The Differential
Dynamic Programming approach, outlined in [7], [24]-[26], is used to
calculate the expression for the change in cost produced by the introduction
of the special variation. The new necessary céndition is deduced from this
expression. Control problems without terminal constraints are considered

first. For this class of problems, the special control variation is a

4 Many additional references are given in [11], [21] and [23].

=f= Some control problems are described which illustrate the necessity of
the new condition in cases where the generalized Liegendre-Clebsch
condition is satisfied.



rectangular pulse. - With terminal constraints present, the rectangular
pulse is followed by a control variation which is designed to keep the

terminal constraints satisfied to first-order.

2. Preliminaries

Consider the class of control problems where the dynamical system
is described by the differential equations:
x = f(x,u, t) 5 x(to) =% (1)
where
f(x,u,t) = fl (x,t) + fu(x, tha . (2)

The performance of the system is measured by the cost functional

t
f
V(xo, to) = S; L(x, t)dt + F(x(tf),tf)' (3)

o
and the terminal state must satisfy

W(xlty), t) = 0 . (4)
The control u is required to satisfy the constraint

lutt)] S 1 5 te [t ,td - (5)
. Here, x is an n-dimensional state vector, and u is a scalar control. f1
and fu are n-dimensional vector functions of x at time t, and L. and ¥ are
scalar functions. ¥ is an s-dimensional column vector function of x(tf)
at tfl The final time is assumed to be given explicitly. The functions
f, L and F are assumed to be three times continuously differentiable in
each argument.

rIr‘he control problem is: determine the control function u(-) to

satisfy (5) and (4) and minimize the cost V(xo, to), In general the optimal

control function u(-) will consist of bang-bang sub-arcs and singular



sub-arcs.+. A bang-bang arc is one‘alcymg which strict equality holds in
(5), except at a finite number of 'switch times' where the control u changes
sign. A singular arc is one along which the control is interior to the

constraint set; that is, strict inequality holds in (5).

3. Necessary Conditions of Optimality

It can be shown, for the case where terminal constraints are absent,

that along a singular arc the following necessary conditions of optimality

hold:
-V =H (x,u,V ,t) ; V_(t)=F (x(tg,t,) (6)
H (x,V_,t) =0 (7)
where
H(x, u, v);, t) = Lx, t) + {V_, f(x, u, t}) (8)

and ;{_(- ), TJ.-(’) denote the candidate state and control functions. The
derivative —V-X(-;, t) is the first partial derivative#: of V -- the cost produced
by the control function u(-). Here, VX can be identified with Pontryagin's
adjoint variable. Note that _\—f_x is not the first partial derivative V; of the
optimal cost V© which is obtained when optimal feedback control is used.
Along a singular arc, .Kélley et al [20], Robbins [21] and Tait [22]

prove that an additional necessary condition of optimality is:

; P o
('l)pi['é_—H (X, nyt)] =0 (9)

where the 2p-th time derivative of Hu is the first to contain explicitly the
control u. Inequality (9) is known as the generalized Legendre-Clebsch

condition.

+ From this point on, 'arc'and 'sub~arc' are used synonymously.

—

=f= V is determined by changing x but keeping the control function unchanged

at u(-).
-3_



-4, Expression for Change in Cost when Control Variation is Present:

Terminal State Unconstrained.
If a control function u(-) + Ou(-) is applied to the system, then a
trajectory x(+) + 0x(-) is produced. At time f _V(g + 0x,t) is the cost
to go, from t to the final time t,, when starting in state ;(t)‘ + 0x(t) and
using controls a(-) + Ou( ). Let us assume ‘that’the cost can be expanded
in a Taylor series about x,t:

V(x + 0x,t) = V(x,t) + <Vx(§£, t), 0% + %@x,‘vxx(;z,‘t)ﬁ}é

+ higher-order terms . -(10)
The partial derivatives in (10) are obtained by changing x but keeping the
céntrol function .ﬁxed+ at u(-) + Ou(-). V(;:, t). == the cost to go from t to ’cf
when starting in state _>E(t) and uSing controls u(-) + Ou(-) -- can be written
as |
CV(x,t) = V(x, t) +a(x,t) (11)
where “al(a;,,t)‘, is the chénge in cost, ‘whe.'.n‘ starting at time t in state §(t),
prdduced by the variation Ou(r), 7 € [t, tf].
Using«’(ll) in (10):
V(% + 0x, t) = V(x,t) + a(x, t) + & (%, 1), + -12-<6x; V(510
+ higher-order terms . (12)
From (3) it is clear that
V(x + 0x,t) = -L(x + 0x,t) (13)
whence,

..-%%-/(; + 5x,.t) = L(; + 5X, t) + <Vx(§ + GX’ t), f(;; + Gx’_-{i.,{‘ Gu"t)> g
(14)

-]- ¢.f..Section 3.



Substituting (12) into (14) and expanding L, and f in Taylor series about §,

we obtain:

oV _oa _ %V 1, 2V
-5 "o -<—-5-E—-,5x> - -Z<5 , 81: = 0> + higher-order terms =

H(x,u + Ou, V_,t) + (H_+ v 500

1 T 1.T 1
to@x,(H _+£V _+V_f +50V __ +5V 00
+ higher=-order terms . (15)
All derivatives in (15) are evaluated at %, u +.0u, V.t
Since equality holds for all 0x, we equate coefficients to obtain:
oV da _
gl H(X u+5uV ,t)
\
8V _ o
-—-a—t—' = H (X, u + 511, VX, t) + VXXf(X, u + 611, t)
oV T > (16)
XX - - - = -
STl HXX(X, u + Ou, Vx’ t) + fX (x,u + 511, t)VXX + VXXfX(X, u + Ou,t)
1 - — 1.T— —
t 5V J0u+ 0ut) 57 (x,u + Ou, )V /

The higher-order equations are not presented.

Now,
(V + a) —-—v ——— + <V £(x, u, t})

Therefore,

d, = 0

E(V+a):—5—( a)+<V , 1%, u, t) \
and

8V >
. - (17)
V=V 5,4, t)
v
y _ xx , 1 —— 1.T— =
Vxx =5t + vaxxf(x’ u, t) + zf (x,u, t)VXXX /



Using (17) in (16), the following equations result:

. ~a=H ~ H(X, u, VX’ t) \

-VX = HX + Vxx(f - f(x,u,t))

~ T 1 __ \(18)
-V =H +4{ V. +V { +35V (f - f(x,u,t))
XX XX X XX XXX & 2 XXX ’

1 -—— T
+ —Z(f - f(x,u, t)) Vxxx )

where, unless otherwise specified, all quantities are evaluated at x, u + Ou,

’Vx’ t. Using the special structure of f, Eq. (2), equations (18) become:
-4 = H Ou \
u

-V_=H_+(H__+V_f)0u

X X xXu XX u

y T T s (19)

-V _=H +1i{'V +V f +(H +f" V. +V -f

XX XX X XX XX X XXu XU XX XX xXu

+%V f +lfTV }Ou
xxx u 2 xXxx )

In (19), all quantities are now evaluated at ;, u, ,Vx, t. Boundary conditions
. for Eqgs. (19) are, clearly,
‘a(tf) =0
Vx(tf) = FX(X, ’cf) (20)
Vxx(tf) - Fxx(x’ tf)
The change in cost owing to the presence of a control variation Ou(r);
T €[ty,t,], t, >t;, is given by
f
a(t,) = a(t,) + a(t)dt (21)
1 2 ¢
2

5. New Necessary Condition: Unconstrained Terminal State

A singular arc is assumed to lie in an interval [ta, tb]. A control
variation in the form of a rectangular pulse of height n and duration T is

introduced in an interval [tl’ t,] where:

-6~



t, <t <t i=1,2,t, >t; (22)
Ou(t) .T.
d
to ta tl 1:2 tb ’cf t —»
Figure 1

The change in cost produced by this variation is given by

t

1 1

a(ty) = S‘ adt + a(tz) = y —Huéudt +a(t,) (23)
t, ts

where Hu is evaluated at x, Vx’ t. Expanding the integral in a Taylor

series in T, the expression for the change in cost becomes:

a(tl) = Huﬁu T - %%[Huéu] TZ + .. +alt,) - (24—)+
) t2
At time t,, one has
a(tz) =0
v (t;)) =V _(t,) (25)
weltz) = V()

where VX(tZ) and VXX(t

t€(t,, te]

+ Note that in (24) quantities are evaluated at the time instant immediately
prior to time ts.



-Since §(t2) is on the singular arc, Hu(—i, -‘R-f_x,t ) = 0. Thus, the

first non~zero term in expansion (24) is the Tz one. We have that:
d y 5. v .
E[Huau]‘ = Huau' + Huﬁul = Hu(x, Vo t)l n (26)
t2 t2 ) t2
From (19), (20),
H (xV,0| ={{Vv +il[-H -(H_+V_£)n] (27)
u? ! l uox u x xu xx a1 l )
) t2

The first two terms in (27) sum to zero.+ Using (27) and (26) in (24), the

change in cost is
_1.T~— - = = — 2.2
a(ty) =5f (ot )H_ (5, V ,t,) +V__£ (x,t,)]n"T
+ higher-order terms . (28)
For the singular arc to be a condidate as a minimizing arc, it is necessary

that the change in cost, owing to the presence of the control variation, be

non-negative. From (28) this implies that

T — —~ — - _
£ H, (0, V 1) +V_f(x,t)] >0 (29)
where \
-V_ =H_(x,u,V_,t)
c B y (30)
v = - T — = = L -
V.. = Hxx(x’ u, V_, t) + fX (x,u, 1:)VXX + Vxxfx(x’ u, t)
/
and \
V_(t) = F_(x(t), ty) o
Xx(tf) = FXX(X(tf)’t_f)

Inequality (29) is the new necessary condition of optimality for singular

control problems with unconstrained terminal states.

. e
+ H (%, V ,t)) = 0=1£V_

T.. — —
- fu Hx(x, u, Vx’ tz)

-8~



6. Examples

1. Consider the following scalar control problem:

Xx=u x(0) =1
2
2
V(i 0) = S‘ x dt
0
fal <1

The optimal control is
, tefo1]

, t € (1,2]

The arc in x,t space along which u(t) is zero, is singular.

For the above problem we have that

2
H(x,u, Vx,t) =x + qu

H (x,V

u t) =V

x’ x

and

whence

so that the generalized Legendre-Clebsch condition is satisfied.

It is clear that

fTH +V £)=V
u xXu

XX u XX

(32)

(33)

(34)

(35)

) (36)

» (37)

(38)

(39)



and from (36)

VXX('T) = 27 ‘ \ (40)
.where

T=2d =t . ‘ v‘ (41)
From (40),

V. =0 Vrell,2] (42)

so that the new necessary condition is satisfied.

-Let us consider now the following cost functional
2

V(L,0) = ‘S. ~x2 dt - sz(tf) (43)
0

where S is positive. The control program (34) is a stationary solution for
this cost functional because the first-order necessary conditions of
optimality are satisfied. Moreover, the generalized Legendre-Clebsch

condition is satisfied. However, the differential equation for Vxx is

) ——

V. =2 5 V_(t)=-8 (44)

XX

and hence

-V_XX(T) - =8 BBy . (45)

_Since S is positive, the new necessary condition is violated for 7 sufficiently
s : 1 :
small. It can be verified directly that, for:S > %, a control function

ut) =-~1 , tefo0,1]
(46)
ult) = € R t e (l,2]

- produces a cost lower than that resulting from the use of the control program
(34), confirming the non-optimality of that centrol program.
2. Consider the second-order control problem:

X = X : %.{(0) =0
1 2 2 1 (47)

1]

5;2» u 5 xZ(O)zl

-10~



2
1 2 2
V(XO, 0) = > Sl (X1 + xz)dt (48)
0
[u] <1 (49)
Here,
--VX1 =% 5 Vxl(tf) =0
. (50)
-VXZ =%, * VX1 5 sz(tf) =0
and
A
H =V
u X,
H_ = -x, - VX1 > (51)
Hu_ = Tu - oxy )

so that the generalized Legendre~Clebsch condition is satisfied. The

expression fT(H +V_f)isequaltoV , and
u' xu xx u X)X,

T (52)

so that the new necessary condition is satisfied. It can be verified [9] that
this problem has a stationary solution which exhibits a singular arc. More=
over, the stationary solution is minimizing.

Consider now the following cost functional:

§_71
1 2 2 2
V(Xo’ 0) = > S‘ (--X1 + Xz)dt (53)
0
Here,
-Vxl S|
. , (54)
-V, o=x,+V
%2 *1

-11-



and

H =V \
u XZ
Hy=mxp =V, ) (55)
H =-u-x
u 1 )

so that the generalized Legendre-Clebsch condition is satisfied.
It is easy to see that

’zl(t) = sint
(56)

;Z(t) = cost
is a singular solution, and the cost functional value corresponding to this
trajectory is zero.

One can verify that the equation for VXZXZ(T) is
V o (=137 (57)
272

which is negative for 7 >/ 3": that is, the new necessary condition is
violated for 7 > /3. The control function corresponding to the trajectory "
(56) is,

u(t) = - sint . (58)
Consider the control function

u(t) = u(t) + € (59)
where € is a constant. Then, the resulting trajectory is

%, (t) + Ox (t) = cost + et
2 2

- 1 2 (60)

x, (t) + 5x1(t) = sint + 5 et

The integrand in (53), corresponding to trajectory (60) is:

. ,
-(sinzt + etzsint + —fI—t4) + (coszt + 2€tcost + eztz) . (61)

-12=-



Using (61) in (53),

27

4:
V(xo, 0) :% [coszt - 31n2t + €(2tcost - t251nt) + € (-—-— + t2 )]dt
0 (62)
5 .3 3m/2
= é—[%—sinZt + E‘tzcost + Ez(-z—o- + —)]
= -40. 7€ (63)

which is negative, confirming the non~optimality of the singular trajectory.
The above examples illustrate the necessity of the new condition of
optimality. Also demonstrated is the non-equivalence of the new condition

and the generalized Liegendre-Clebsch condition.

7. Adjoining Terminal Constraint

Here we consider the case where equality (4) is present. The
equality constraint can be adjoined to the cost functional by a vector b
of Lagrange multipliers, in the following way.

t
ok f
v (Xo,b, to) = S‘ L(x, t)dt + F(x ), f ) + <b QU(x > . (64)
t

o
Assume that x(- ), b and u(-) are stationary solutions of (64); the following

necessary conditions are satisfied along a singular arc:

st
. e

— — — =K — — T .— —

SV s H (5u,V ,t) 5V (t) = F (x,t) + tlxx(x, t)b (65)
— R

Hu(X’ VX,t) =0

S5k — —
v (Xo’b’ to) has an unconstrained minimum with respect to u(-) at u(.),

the following condition must hold along the singular arc:

£ O0[H, (%, V., 0 + V. 1 (%,0] > 0

-13-



where

AR BT A A Vi (t)=F_ (% Y (x
- 5 xx(tf) - xx(x’ tf) + wax(x’ tf)

XX XX X XX XX X
(67)

Condition (66) follows from Section 5.

However, failure of condition (66) does not imply that x(* ), u(-) is
not a minimizing solution for the constrained problem where equality (4)
is enforced. This is so because a minimizing solution of the original
constrained prbblem r(1eed only be a stationary solution of (64) for fixed
b =b. In order to determine‘ whether x(- ), u(-) is a possible minimizing
solution, oﬁe has to ensure tha.t, on the introduction of a control variation,

equality (4) remains satisfied.

8. New Necessary Condition: Constrained Terminal State

Let us assume, as in Section 5, thét a control variation consisting
of a rectangulé,r puise of duration ty =t £ T and height n is introduced
in the singular control interval [.ta’ tb] A further control variation is now
introduced i.n the interval (t,, tb] in ordevr to force equality (4) to remain
satisfied. We shall assume the following form for the control variation
in the interval (t,,t, ]:

bu(r) = B(r)e ;T e(ty,t] . (68)

Here, B(7) is a time varying, r-dimensional row vector and ¢ is a constant
r-dimensional vector. For 0x and Gq sufficiently small, the following
equations are valid:

Ok(r) = £ (x,u,7)0x(7) + £ (x,7)B(r)e ; T e(t,t]
— - (69)
Ox(r) = fx(x, u,7)5x(7') 3 T € (tb, tf]

where Gx(tz) # 0 owing to the rectangular pulse variation prior to iz. In

order that the control constraints (5) remain satisfied when (68) is used,

-14-



it is assumed that Il-('T), T € (ta, tb) is in the interior of the control constraint

set.+

The solution of Eqs. (69) is

t
Ox(t) = &(t, tz)ﬁx(tz) + Sl &(t, 7)f ( )B(T)odT
t2
with (70)
B(r)o =0 T € (¢, tf]
where ®(t, T) satisfies the differential equation
4 =f (x,u ; = I 71
St 7) = £ (x5, 00, 1)  alr,7) = (71)
Att = te, we require, for 5x(tf) sufficiently small, that
Y (x,t)0x(t;) = 0 (72)

Setting t = tf in (70), and using (72), we obtain

0 =¥ _(x,t ety t,)0x(t,) + ¥ (x,tf)j‘ a(ty, T)E (T)B(T)odT (73)

which, by $70), is equivalent to

t
b
0 = ¥ (x, t)8(t,, t,)0x(t,) + ¥_(x,t,) S' B(t,7 )i (T)B(r)edr . (74)
t
2
Let us choose
B(r) = £-(r)@ " (t, W/ (%, t,) (75)

Using (75) in (74), we obtain

+ If the singular control and the non-singular 'bang' control are continuous
at t,, then (68) is used up until t, - €, € > 0 to ensure that the control
constraints remain satisfied in the interwval (t b)

-15=



v (5t [5 @lty, T (T ()0 (b, 7TV L (%, t)0 = -W_(X, t )8t 1) Ot}

(76)
Denoting the contents of the square brackets on the left-hand side of (76) by

Wity tp) (77)

we obtain+

h

o

[, W ey, WL (5, 007 (%, t ol ) 0x(t)
(78)

Y 6x(t2)

We have, for Gx(tz) sufficiently small, i.e., for 5 (or T) sufficiently
small, that if expressions (75) and (78) are used in (68), then equality (4)

is maintained to first-order. That is, the change in 5x(tf) is at most of

order [Ox(t )]2-.

— _—

For 7 € (t 1o | f] we have the same equations for Vx and V o’ namely
_-—-* _ — — 32 ) \
Vv, = H G5u,V 1) ; (f) F_ +zl/ b .
. . : A - f
o— 1 — e 5B T — — — —
-V o " Hxx(x, u, Vx’ t) + fx (x,a, t)vxx + Vxxfx(x, u,t) >(79)

u—-4

xx(tf) - 1?xx + wax

For 7 € (t,, tb] the dynamical equation is

(x + 0x) = f(x + Gx,a + Bo, 7) (80)
and the cost functional is

t

- — b — — e
V (x + 0x, b, 7) =S Lix + 0x,t)dt + V (x + 0x, b, t

't (81)
;

+ It is easy to show that if the linear system Ox = i Ox + fu5u is completely
controllable, and if l[/ (x,t ) has full rank s, the iiverse'in Eq. (78) exists.

-16-



L - —
Since the cost V (x + 0x,b,T), T € [tz, tb] depends on o, let us make this

dependence explicit by defining

I(x + 0x,b,0,7) =V (x + 0x,5, 7) (82)
so that
t .
— - b — —
J(x + 5X,b, o, T) = ‘S‘ Lix + 0x, t)dt + V (x + 0x, b, tb) . (83)
T

In a similar way to that demonstrated in Section 5, the following equations

can be obtained,

— R

-3 =H_ ST () = Vo) \

~JXX - Hxx f;fJxx Jxxfx ) Jxx(t,b) = vix(tb)

Je=B H, =0 i Jglty) =0 5 (84)
-:IXO' - f;fjxo‘ * (qu * Jxxfu)ﬁ ’ ch‘(tb) =0

"Top =T LB HEBT ;T (k) =0 /

where all quantities in (84) are evaluated at §, 4. These equations can be
integrated backwards from ty until t, is reached. Att,, ois given by Eq.
(78), and the expansion for J(x + 0x, b, o, t,) to second-order in 5x(t2) and

ois

1 1
+5 bx, I 0+ —2-<0', ;GUG> ) (84)
Substituting into (84) the value of ¢, we obtain

, vOx, tZ) = J(x,b, 0,t,) + Jx’ 5x> + <‘Id’ y5x> + <5x, Jxo_y5>9

1 1 T
+ -2-<5x, Jxx5x> + -2-<5x? Y Jo_o_y5x> . (85)

Renaming the left-hand side of (85) as 3(§ + 5x, —b-, t2) we obtain

-17-



T =13 +yTJ0_0_y+JXO_y+yTJ

ox (86)
and

since Jo_ =0 (87)

x % ?
Equations (86) and (87) are the second and first partial derivatives of the
cost at t = t,, given that the terminal constraints (4) are satisfied to
first-order.

From Section 5, the change in cost, owing to the presence of the

rectangular pulse in the interval [t;,t,] is

1 T, — —_ A A —_ 2.2 . .
Efu (x, tz)[qu(x, J o ty) + Jxxfu(x, tz)]n T” +higher-order terms4 (88)

Thus the new neCessary condition of optimality for singular problems with

terminal constraints is
e )H (%3 ,t)+T £ (xt)]= 0 (89)
u 2 xu %’ 2 xx '’ ? 2 :

As mentioned earlier, the control B(7)o only ensures that the terminal
constraints are satisfied to first-order. In the Appendix it is demonstrated
that if the terminal constraints are satisfied to second-order, conclusion
(89) is unaffected. This is true also if the terminal constraints are satisfied

to higher-order, or satisfied exactly.

9. Example

Consider the following scalar control problem:
x=u , x(0)=1 (90)

2
V(l,0) = S' <2 at - Sx(2) (91)
0

with the terminal constraint that

x(2) = 0 (93)
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and the control constraint

ful s 1 . (94)
In Section 6 it was demonstrated that, in the absence of equality (93), and
for § > 0, the following control program is a stationary, non-minimizing
solution:

u(lr) =-1 ;3 7 €l0,1]

(95)

u(r) = 0 ;T €(1,2]
We shall demonstrate now that with equality (93) present, the new
necessary condition (89) is satisfied (by inspection the control program
(95) is optimal for all S).

Since the singular arc extends from t = 1 to t = 2, we have ty =te= 2.

For the above problem Eqgs. (84) become

-& = 2x

x
] =2

XX
3, =0 > (96)
-J =7

X0 XX

. /
-J =27

oo ox

Boundary conditions for Eqs. (96) are zero at t = 2, except for
JXX(Z) = =S . (97)
From (96) and (97), we obtain the solutions

JX(T) =0 \
J_(1)=-8S+ 27

XX
I 7) =0 b (98)

N L 2
Jxo_('T) = =St +T
_ 2,23 J

JO_U_('T) = =-S7 +3'T

along the singular arc.
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In addition,

-1

Y==T
where (99)

T=2-t t=1
From (86), (98) and (99),

EXX = =S + 27 + 2(-S7 + 7 (-1 1) + (r )¥(-57% + %73) (100)
and we have that

T A A _ _2_

fu SHXU_ * Jxxfu.)‘ B Jxx =37 (1o1)

so that the new necessary condition is satisfied for all 72 0, independent

¢
of S; this is the desired resuit.

10. Generalized Legendre-Clebsch Necessary Condition

In [23], Kelley et al used a special control variation of the form
shown in Fig. 2 to derive the first generalization of the Legendre-Clebsch
condition. They gave an heuristic argument to demonstrate that, if the
control problem is normal, then a control variation can be found such that
the terminal constraints (4) are met, at least to first-order, and the
resulting change in cost owing to this added variation is negligible com~-

pared to that caused by the variation shown in Fig. 2.

2
Ou(t)




If our rectangular pulse is replaced by Kelley's special variation,
and if Eq. (68) is used to maintain the terminal equality (4) to first-order,
then expansion of Eq. (21) yields -- upon requiring a(tl) to be greater
than or equal to zero ~-- the first generalization of the Legendre-Clebsch
condition:
9 dz - A
— Hu(X,J t,-7)] <0 (102)

Bu dtz x’ 2

The normality assumption of Kelley and Robbins is the same as our
assumption of controllability of

0% = £ Ox + f du (103)
X u
and the maximal rank of

yr (104)

X
required to ensure the existence of the control variation
B(r)o (105)
which maintains satisfaction of terminal constraints (4) to first-order. The
complete generalized Legendre-Clebsch condition can be derived by using

Kelley's generalized special variation.

11. Conclusion

In this paper we have derived a new necessary condition of
optimality for singular control problems. The control problem without
terminal constraints was treated first. With terminal constraints present,
a special admissible control variation has to be constructed; this requires

that the control problem be norma1.+

+ Note that if the linearized system is completely controllable then condi-
tion (89) applies equally well to the control problem without terminal
constraints; that is, (89) must be true for all matrices ll/;f of full rank.
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The Differential Dynamic Programming technique was used to obtain
an expression for the change in cost produced by the control variation. For
the singular arc to be minimizing it is necessary that this change in cost
be non-negative; from this requirement the new necessary conditions
were deduced. Simple examples were used to illustrate the non-equivalence
of the new conditions and the generalized Legendre-Clebsch condition.
Finally, it was remarked that the generalized Legendre-Clebsch condition
can be obtained by expanding Eq. (21) and using Kelley's special variation
followed by the variation Eq. (68) which maintains satisfaction of the
terminal constraints, Eq. (4), to first-order.

In some aerospace problems, stationary confrol functions have
been determined which pass the generalized Liegendre-Clebsch test, but
whose optimality remains in doubt. The new necessary condition of
optimality should prove useful in ascertaining whether indeed these control
functions are extremal or not.

Further, it is hoped that a useful sufficiency condition of optimality
will evolve from the type of arguments presented in this paper, and that
this will lead to the development of numerical techniques for solving

singular optimal control problems.
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Appendix

A.l. Satisfaction of Terminal Constraints to Second~Order

Expansion of equality (4) to second-order in 5x(tf) about g(tf) vields

- 1 -
l//x(x, tf)éx +wax(x,vﬁf)5x5x =0 (A-—l)+
and the expansion of (1) to second-order in 0x and 0u, about ;5, uis

. 1
8 = £ Ox + £ Ou+ £ Oubx +2f Bxbx ; Oxlty) £ 0 (a-2yt

The solution of (A-2), correct to second-order terms is

t
Ox(t) = @(t, t,)0x(t ) + St &(t,7 )£ (7)0u(r)dr + %@Xw,tz)ﬁx(t)ﬁx(tz)
2
t t
+—é—§ a(t, )L _(7)0u(r)0x(r)dr +-§—§ ®_(t, 7)0x(t)f_(7)0u(r)dr
tz ux tz x u
(A-3)
where
o(t,7) = £ &(t,7) 5 B(r,T) =1 (A-4)
and
o (t,7) =L@ (t,7) - & (t,7) +{ &(t;7) ; & (7,71)=0 . (A-5)

The quadratic terms on the r.h.s. of (A-3) contain 0x(t): for (A-3) to be
correct to second~order terms, the following expression can be used for
O0x(t) in the r.h.s. of (A-3):

t

Ox(t) = a(t, t,)0x(t,) + Sl a(t, 7)f (7)0u(T)dr (A-6)
t
2

n n
"Dxx(;’ tf)ﬁxéx = Z Z RI/XinﬁxiGXJ ; similarly for fuxﬁuﬁx and fxxﬁxﬁx.
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Substituting (A-6) into the r.h.s. of (A-3), we obtain

t
Ox(t) = &(t, t2)5x(t2) + S a(t, 'r)fu(7)5u(7)d7
t
2
t
+ -é—@x(t, tz)[<I>(1:, tz)ﬁx(to) + S‘ a(t, 'r)fu('r)éu('r)d'r]éx(tz)
t
2
t

.
+%S; @(t,'r)fux('r)ﬁu(q')[i @('T,tz)ﬁx(tz)
2

(0]
T t
+ S; (T, '7")fu('1")5u('7")d'7' ar + %\S; @X(t, )&t tz)ﬁx(tz)
2
t
+ § 3t mo rourar ourar (a-7)
2

The form of Ou(r), based on satisfaction of the terminal constraints to
first-order is, from (68),

Su(r) = B(r)e (A-8)
where ¢ is given by (78) as

o = yOx(t,) (A-9)
so that o is of first-order in 5x(t2).

Let us assume now that Ou(r) is of the form
Ou(r) = B(7)[e + a] (A-10)

where ais of order 5x2(t2). Then, to second-order in 5x(t2), 5x(tf) is:
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te

Ox(ty) = @ty t,)0x(t,) + y & (t;, 7)E (T)B(T)[0 + oldr
t
2
t
1 f
+ _Zéx(tf’ tz)[é(tf) tz)éx(to) + S; @(tf, 'T)fu(’r)ﬁ(T)O'd'T]ﬁx(tz)
2
tf T
+%§t @(tf,T)qu('r)ﬁ(*r)U[j‘t (7, t,)0x(t,)
o o
T t
i f
+ S; @(T,T')fu(T')ﬁ('T')O‘dT dr + ES; @X(tf, 7)[¢(tf, t2)5x(t2)
2
f
+ 5 é(tf,T')fu('T')ﬁ('T')O‘dT "NB(7)odr (A-11)
t
2

If (A-11) is now substituted into (A-1), then the first-order terms in o
vanish, because of (73), leaving

t
f
[ WX(;Z, tf)fu(T)ﬁ('T)d"r]a + terms of order 5x2(t
t
2

=0 . (A-12)

The quantity in the square brackets on the 1.h.s. of (A-12) is, from (76),
just

W, G5, Wity £ W (5, t) (A-13)

which is invertible. So, from (A-12), a can be found and it is of order
»ze(tz). Thus a control variation of form

Ou(r) = B(r)[e +q] (A-14)
where 0 is first-order in 5x(t2) and a is second=-order in 5x(t2) maintains
the terminal equality (4) correct to second-order terms. Now if (A-14)
is substituted into (85), we find that, because a is second-order in 5x(t2),
and Jo_ = 0, (86) and (87) do not contain a; thus the conclusion (89) is un-

affected if we satisfy the terminal constraints to second-order rather

-29-



than to first-order. Satisfaction of terminal constraints to higher~order
yields the same result. This confirms that, in order to include all
second-order terms in an expansion of the cost functional, it is only
nece'ssary to expand the Hamiltonian to second~order terms and the

dynamic and terminal constraints to first-order terms.
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